Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Language
Year range
1.
Infection and Chemotherapy ; : 332-341, 2021.
Article in English | WPRIM | ID: wpr-898602

ABSTRACT

Background@#Coronavirus disease 2019 (COVID-19) outbreaks occur in hospitals in many parts of the world. In hospital settings, the possibility of airborne transmission needs to be investigated thoroughly. @*Materials and Methods@#There was a nosocomial outbreak of COVID-19 in a hematologic ward in a tertiary hospital, Seoul, Korea. We found 11 patients and guardians with COVID-19 through vigorous contact tracing and closed-circuit television monitoring. We found one patient who probably had acquired COVID-19 through airborne-transmission. We performed airflow investigation with simulation software, whole-genome sequencing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). @*Results@#Of the nine individuals with COVID-19 who had been in the hematologic ward, six stayed in one multi-patient room (Room 36), and other three stayed in different rooms (Room 1, 34, 35). Guardian in room 35 was close contact to cases in room 36, and patient in room 34 used the shared bathroom for teeth brushing 40 minutes after index used.Airflow simulation revealed that air was spread from the bathroom to the adjacent room 1 while patient in room 1 did not used the shared bathroom. Airflow was associated with poor ventilation in shared bathroom due to dysfunctioning air-exhaust, grill on the door of shared bathroom and the unintended negative pressure of adjacent room. @*Conclusion@#Transmission of SARS-CoV-2 in the hematologic ward occurred rapidly in the multi-patient room and shared bathroom settings. In addition, there was a case of possible airborne transmission due to unexpected airflow.

2.
Infection and Chemotherapy ; : 332-341, 2021.
Article in English | WPRIM | ID: wpr-890898

ABSTRACT

Background@#Coronavirus disease 2019 (COVID-19) outbreaks occur in hospitals in many parts of the world. In hospital settings, the possibility of airborne transmission needs to be investigated thoroughly. @*Materials and Methods@#There was a nosocomial outbreak of COVID-19 in a hematologic ward in a tertiary hospital, Seoul, Korea. We found 11 patients and guardians with COVID-19 through vigorous contact tracing and closed-circuit television monitoring. We found one patient who probably had acquired COVID-19 through airborne-transmission. We performed airflow investigation with simulation software, whole-genome sequencing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). @*Results@#Of the nine individuals with COVID-19 who had been in the hematologic ward, six stayed in one multi-patient room (Room 36), and other three stayed in different rooms (Room 1, 34, 35). Guardian in room 35 was close contact to cases in room 36, and patient in room 34 used the shared bathroom for teeth brushing 40 minutes after index used.Airflow simulation revealed that air was spread from the bathroom to the adjacent room 1 while patient in room 1 did not used the shared bathroom. Airflow was associated with poor ventilation in shared bathroom due to dysfunctioning air-exhaust, grill on the door of shared bathroom and the unintended negative pressure of adjacent room. @*Conclusion@#Transmission of SARS-CoV-2 in the hematologic ward occurred rapidly in the multi-patient room and shared bathroom settings. In addition, there was a case of possible airborne transmission due to unexpected airflow.

3.
Journal of Korean Medical Science ; : e123-2020.
Article in English | WPRIM | ID: wpr-899810

ABSTRACT

As the coronavirus disease 2019 (COVID-19) outbreak is ongoing, the number of individuals to be tested for COVID-19 is rapidly increasing. For safe and efficient screening for COVID-19, drive-through (DT) screening centers have been designed and implemented in Korea. Herein, we present the overall concept, advantages, and limitations of the COVID-19 DT screening centers. The steps of the DT centers include registration, examination, specimen collection, and instructions. The entire service takes about 10 minutes for one testee without leaving his or her cars. Increased testing capacity over 100 tests per day and prevention of cross-infection between testees in the waiting space are the major advantages, while protection of staff from the outdoor atmosphere is challenging. It could be implemented in other countries to cope with the global COVID-19 outbreak and transformed according to their own situations.

4.
Journal of Korean Medical Science ; : 123-2020.
Article in English | WPRIM | ID: wpr-810937

ABSTRACT

As the coronavirus disease 2019 (COVID-19) outbreak is ongoing, the number of individuals to be tested for COVID-19 is rapidly increasing. For safe and efficient screening for COVID-19, drive-through (DT) screening centers have been designed and implemented in Korea. Herein, we present the overall concept, advantages, and limitations of the COVID-19 DT screening centers. The steps of the DT centers include registration, examination, specimen collection, and instructions. The entire service takes about 10 minutes for one testee without leaving his or her cars. Increased testing capacity over 100 tests per day and prevention of cross-infection between testees in the waiting space are the major advantages, while protection of staff from the outdoor atmosphere is challenging. It could be implemented in other countries to cope with the global COVID-19 outbreak and transformed according to their own situations.

5.
Journal of Korean Medical Science ; : e123-2020.
Article in English | WPRIM | ID: wpr-892106

ABSTRACT

As the coronavirus disease 2019 (COVID-19) outbreak is ongoing, the number of individuals to be tested for COVID-19 is rapidly increasing. For safe and efficient screening for COVID-19, drive-through (DT) screening centers have been designed and implemented in Korea. Herein, we present the overall concept, advantages, and limitations of the COVID-19 DT screening centers. The steps of the DT centers include registration, examination, specimen collection, and instructions. The entire service takes about 10 minutes for one testee without leaving his or her cars. Increased testing capacity over 100 tests per day and prevention of cross-infection between testees in the waiting space are the major advantages, while protection of staff from the outdoor atmosphere is challenging. It could be implemented in other countries to cope with the global COVID-19 outbreak and transformed according to their own situations.

6.
Epidemiology and Health ; : e2015041-2015.
Article in English | WPRIM | ID: wpr-721288

ABSTRACT

OBJECTIVES: This study investigated the epidemiologic features of the confirmed cases of Middle East Respiratory Syndrome (MERS) in Pyeongtaek St. Mary's Hospital, where the outbreak first began, in order to identify lessons relevant for the prevention and control of future outbreaks. METHODS: The patients' clinical symptoms and test results were collected from their medical records. The caregivers of patients were identified by phone calls. RESULTS: After patient zero (case #1) was admitted to Pyeongtaek St. Mary's Hospital (May 15-May 17), an outbreak occurred, with 36 cases between May 18 and June 4, 2015. Six patients died (fatality rate, 16.7%). Twenty-six cases occurred in the first-generation, and 10 in the second-generation. The median incubation period was five days, while the median period from symptom onset to death was 12.5 days. While the total attack rate was 3.9%, the attack rate among inpatients was 7.6%, and the inpatients on the eighth floor, where patient zero was hospitalized, had an 18.6% attack rate. In contrast, caregivers and medical staff showed attack rates of 3.3% and 1.1%, respectively. CONCLUSIONS: The attack rates were higher than those of the previous outbreaks in other countries. The outbreak spread beyond Pyeongtaek St. Mary's Hospital when four of the patients were moved to other hospitals without appropriate quarantine. The best method of preventing future outbreaks is to overcome the vulnerabilities observed in this outbreak, such as ward crowding, patient migration without appropriate data sharing, and the lack of an initial broad quarantine.


Subject(s)
Humans , Caregivers , Cross Infection , Crowding , Disease Outbreaks , Epidemiology , Information Dissemination , Inpatients , Korea , Medical Records , Medical Staff , Middle East , Quarantine
SELECTION OF CITATIONS
SEARCH DETAIL